5 research outputs found

    Random unitaries, Robustness, and Complexity of Entanglement

    Full text link
    It is widely accepted that the dynamic of entanglement in presence of a generic circuit can be predicted by the knowledge of the statistical properties of the entanglement spectrum. We tested this assumption by applying a Metropolis-like entanglement cooling algorithm generated by different sets of local gates, on states sharing the same statistic. We employ the ground states of a unique model, namely the one-dimensional Ising chain with a transverse field, but belonging to different macroscopic phases such as the paramagnetic, the magnetically ordered, and the topological frustrated ones. Quite surprisingly, we observe that the entanglement dynamics are strongly dependent not just on the different sets of gates but also on the phase, indicating that different phases can possess different types of entanglement (which we characterize as purely local, GHZ-like, and W-state-like) with different degree of resilience against the cooling process. Our work highlights the fact that the knowledge of the entanglement spectrum alone is not sufficient to determine its dynamics, thereby demonstrating its incompleteness as a characterization tool. Moreover, it shows a subtle interplay between locality and non-local constraints.Comment: 14 pages, 11 figures, 1 tabl

    Complexity of frustration: a new source of non-local non-stabilizerness

    Full text link
    We advance the characterization of complexity in quantum many-body systems by examining WW-states embedded in a spin chain. Such states show an amount of non-stabilizerness or "magic" (measured as the Stabilizer R\'enyi Entropy -SRE-) that grows logarithmic with the number of qubits/spins. We focus on systems whose Hamiltonian admits a classical point with an extensive degeneracy. Near these points, a Clifford circuit can convert the ground state into a WW-state, while in the rest of the phase to which the classic point belongs, it is dressed with local quantum correlations. Topological frustrated quantum spin-chains host phases with the desired phenomenology, and we show that their ground state's SRE is the sum of that of the WW-states plus an extensive local contribution. Our work reveals that WW-states/frustrated ground states display a non-local degree of complexity that can be harvested as a quantum resource and has no counterpart in GHZ states/non-frustrated systems.Comment: 8 pages, 3 figure

    Devil's staircase and the absence of chaos in the dc- and ac-driven overdamped Frenkel-Kontorova model

    No full text
    The devils staircase structure arising from the complete mode locking of an entirely nonchaotic system, the overdamped dc+ac driven Frenkel-Kontorova model with deformable substrate potential, was observed. Even though no chaos was found, a hierarchical ordering of the Shapiro steps was made possible through the use of a previously introduced continued fraction formula. The absence of chaos, deduced here from Lyapunov exponent analyses, can be attributed to the overdamped character and the Middleton no-passing rule. A comparative analysis of a one-dimensional stack of Josephson junctions confirmed the disappearance of chaos with increasing dissipation. Other common dynamic features were also identified through this comparison. A detailed analysis of the amplitude dependence of the Shapiro steps revealed that only for the case of a purely sinusoidal substrate potential did the relative sizes of the steps follow a Farey sequence. For nonsinusoidal (deformed) potentials, the symmetry of the Stern-Brocot tree, depicting all members of particular Farey sequence, was seen to be increasingly broken, with certain steps being more prominent and their relative sizes not following the Farey rule
    corecore